WENT 2001 – Lecturers' Notes
Women, Technology and Society
Free the Software, Open the Source

Free the Software, Open the Source
Facts and Figures:

1. Linux is believed to have somewhere between 4 and 27 million users, with best estimates towards the upper end of that range. (According to IDG, business Linux usage increased 212% in 1998. Other figures indicate it is roughly doubling yearly.)

2. At Jun 24 2001 22:45:00 GMT, there are 180,779 users registered and 100,649 machines registered at the Linux Counter website. Experts estimate that there are around 17 million Linux users.

Source: http://counter.li.org/

3. The Netcraft web survey tallies which web servers are used on the Internet. It consistently shows the open-source Apache web server to have over 50% and steadily increasing market share, beating out better-hyped proprietary products like Netscape's and Microsoft's server suites.

Source: http://www.netcraft.com/survey/

4. The Internet Operating System Counter collects data about operating system usage on the Internet in Europe. It consistently shows Linux is the most popular Internet-connected operating system there.

Source: http://www.leb.net/hzo/ioscount/index.html

Definition of Terms:

1. Free Software

(excerpt from The Free Software Definition: http://www.gnu.org/philosophy/free-sw.html)

"Free software'' is a matter of liberty, not price. To understand the concept, you should think of "free'' as in "free speech,'' not as in ``free beer.''

"Free software'' refers to the users' freedom to run, copy, distribute, study, change and improve the software. More precisely, it refers to four kinds of freedom, for the users of the software:

· The freedom to run the program, for any purpose (freedom 0).

· The freedom to study how the program works, and adapt it to your needs.(freedom 1). Access to the source code is a precondition for this.

· The freedom to redistribute copies so you can help your neighbor (freedom 2).

· The freedom to improve the program, and release your improvements to the public, so that the whole community benefits. (freedom 3). Access to the source code is a precondition for this.

A program is free software if users have all of these freedoms. Thus, you should be free to redistribute copies, either with or without modifications, either gratis or charging a fee for distribution, to anyone anywhere. Being free to do these things means (among other things) that you do not have to ask or pay for permission.

You should also have the freedom to make modifications and use them privately in your own work or play, without even mentioning that they exist. If you do publish your changes, you should not be required to notify anyone in particular, or in any particular way.

The freedom to use a program means the freedom for any kind of person or organization to use it on any kind of computer system, for any kind of overall job, and without being required to communicate subsequently with the developer or any other specific entity.

The freedom to redistribute copies must include binary or executable forms of the program, as well as source code. (It is ok if there is no way to produce a binary or executable form, but people must have the freedom to redistribute such forms should they find a way to make them.)

In order for the freedoms to make changes, and to publish improved versions, to be meaningful, you must have access to the source code of the program. Therefore, accessibility of source code is a necessary condition for free software.

In order for these freedoms to be real, they must be irrevocable as long as you do nothing wrong; if the developer of the software has the power to revoke the license, without your doing anything to give cause, the software is not free.

2. Open Source

(except from: Open Source Definition: www.opensource.org/docs/definition.html)

Open source doesn't just mean access to the source code. The distribution terms of open-source software must comply with the following criteria:

1. Free Redistribution

The license shall not restrict any party from selling or giving away the software as a component of an aggregate software distribution containing programs from several different sources. The license shall not require a royalty or other fee for such sale.

Rationale: By constraining the license to require free redistribution, we eliminate the temptation to throw away many long-term gains in order to make a few short-term sales dollars. If we didn't do this, there would be lots of pressure for cooperators to defect.

2. Source Code

The program must include source code, and must allow distribution in source code as well as compiled form. Where some form of a product is not distributed with source code, there must be a well-publicized means of obtaining the source code for no more than a reasonable reproduction cost–preferably, downloading via the Internet without charge. The source code must be the preferred form in which a programmer would modify the program. Deliberately obfuscated source code is not allowed. Intermediate forms such as the output of a preprocessor or translator are not allowed.

Rationale: We require access to un-obfuscated source code because you can't evolve programs without modifying them. Since our purpose is to make evolution easy, we require that modification be made easy.
3. Derived Works

The license must allow modifications and derived works, and must allow them to be distributed under the same terms as the license of the original software.

Rationale: The mere ability to read source isn't enough to support independent peer review and rapid evolutionary selection. For rapid evolution to happen, people need to be able to experiment with and redistribute modifications.
4. Integrity of The Author's Source Code

The license may restrict source-code from being distributed in modified form only if the license allows the distribution of "patch files" with the source code for the purpose of modifying the program at build time. The license must explicitly permit distribution of software built from modified source code. The license may require derived works to carry a different name or version number from the original software.

Rationale: Encouraging lots of improvement is a good thing, but users have a right to know who is responsible for the software they are using. Authors and maintainers have reciprocal right to know what they're being asked to support and protect their reputations.
Accordingly, an open-source license must guarantee that source be readily available, but may require that it be distributed as pristine base sources plus patches. In this way, "unofficial" changes can be made available but readily distinguished from the base source.
5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

Rationale: In order to get the maximum benefit from the process, the maximum diversity of persons and groups should be equally eligible to contribute to open sources. Therefore we forbid any open-source license from locking anybody out of the process.
Some countries, including the United States, have export restrictions for certain types of software. An OSD-conformant license may warn licensees of applicable restrictions and remind them that they are obliged to obey the law; however, it may not incorporate such restrictions itself.
6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific field of endeavor. For example, it may not restrict the program from being used in a business, or from being used for genetic research.

Rationale: The major intention of this clause is to prohibit license traps that prevent open source from being used commercially. We want commercial users to join our community, not feel excluded from it.
7. Distribution of License

The rights attached to the program must apply to all to whom the program is redistributed without the need for execution of an additional license by those parties.

Rationale: This clause is intended to forbid closing up software by indirect means such as requiring a non-disclosure agreement.
8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program's being part of a particular software distribution. If the program is extracted from that distribution and used or distributed within the terms of the program's license, all parties to whom the program is redistributed should have the same rights as those that are granted in conjunction with the original software distribution.

Rationale: This clause forecloses yet another class of license traps.
9. License Must Not Contaminate Other Software

The license must not place restrictions on other software that is distributed along with the licensed software. For example, the license must not insist that all other programs distributed on the same medium must be open-source software.

Rationale: Distributors of open-source software have the right to make their own choices about their own software. Yes, the GPL is conformant with this requirement. GPLed libraries "contaminate" only software to which they will actively be linked at runtime, not software with which they are merely distributed.
3. Copyleft

(excerpt from Copyleft: http://www.gnu.org/philosophy/free-software-for-freedom.html)

Copyleft is a general method for making a program free software and requiring all modified and extended versions of the program to be free software as well.

The simplest way to make a program free is to put it in the public domain, uncopyrighted. This allows people to share the program and their improvements, if they are so minded. But it also allows uncooperative people to convert the program into proprietary software. They can make changes, many or few, and distribute the result as a proprietary product. People who receive the program in that modified form do not have the freedom that the original author gave them; the middleman has stripped it away.

If middlemen could strip off the freedom, there may be more users, but those users would not have freedom. So instead of just putting software in the public domain, Free Software activists "copyleft'' it. Copyleft says that anyone who redistributes the software, with or without changes, must pass along the freedom to further copy and change it. Copyleft guarantees that every user has freedom.

Copyleft also provides an incentive for other programmers to add to free software. Important free programs such as the GNU C++ compiler exist only because of this.

Copyleft also helps programmers who want to contribute improvements to free software get permission to do that. These programmers often work for companies or universities that would do almost anything to get more money. A programmer may want to contribute her changes to the community, but her employer may want to turn the changes into a proprietary software product.

To copyleft a program, is to first that it is copyrighted; then distribution terms are added, which are a legal instrument that gives everyone the rights to use, modify, and redistribute the program's code or any program derived from it but only if the distribution terms are unchanged. Thus, the code and the freedoms become legally inseparable.

Proprietary software developers use copyright to take away the users' freedom; Free Software advocates use copyright to guarantee users' their freedom. That's why the name is reversed from "copyright'' into "copyleft.''

Copyleft is a general concept; there are many ways to fill in the details.

Further Reading:

GNU General Public License: http://www.fsf.org/copyleft/gpl.html

A Timeline of the Free Software and Open Source Movements as Viewed by Some Key Players:

The concept of free software is an old one. Computers were first used as research tools in Universities beginning in the 1960s. At that time, software was freely passed around. Programmers hired by the computer laboratories were paid for the act of programming, not for the programs themselves.

Later however, when computers reached the business world, programmers began to support themselves by restricting the rights to their software and charging fees for each copy.

Free Software as a political idea and as a movement came into fore with the founding by Richard Stallman the Free Software Foundation and its GNU Project in 1984. The basic premise of the Free Software Movement is that people should have more freedom, and should appreciate their freedom.

Open Source can be considered as a strategy to market free software.

How is "open source" related to "free software"?

The Open Source Initiative is a marketing program for free software. It's a pitch for "free software" on solid pragmatic grounds rather than ideological tub-thumping. The winning substance has not changed, the losing attitude and symbolism have.

(from The Open Source Initiative FAQ: http://www.opensource.org/advocacy/faq.html)

In 1997, some leaders in the free software community began discussing about finding "a way to promote the ideas surrounding free software to people who had formerly shunned the concept." Many in the community felt that the Free Software Foundation's anti-business message was keeping the world at large from appreciating and using the power of free software.

Bruce Perens who wrote the first draft of "The Open Source Definition," recalls the impetus for coining the term "open source":

"He (Eric Raymonds) contacted me in February of 1997 with the idea for Open Source. Raymond was concerned that conservative business people were put off by Stallman's freedom pitch, which was, in contrast, very popular among the more liberal programmers. He felt this was stifling the development of Linux in the business world while it flourished in research. He met with business people in the fledgling Linux industry, and together they conceived of a program to market the free software concept to people who wore ties. Larry Augustin of VA Research and Sam Ockman (who later left VA to form Penguin Computing) were involved, as well as others who aren't known to me. "

(source: Bruce Perens, "The Open Source Definition" in Open Sources: Voices from the Open Source Revolution. Chris DiBona, Sam Ockman, and Mark Stone (eds.), 1999: O'Reilly and Associates.)

End of World War II - 1946 - early 1970s

Eric S. Raymonds, a programmer who has written extensively about the history and sociology of computer programming descibes this period which he refers to as the time of the "Real Programmers":

(From) 1945 onward, the technology of computing attracted many of the world's brightest and most creative minds. From Eckert and Mauchly's ENIAC onward there was a more or less continuous and self-conscious technical culture of enthusiast programmers, people who built and played with software for fun.

The Real Programmers typically came out of engineering or physics backgrounds. They wore white socks and polyester shirts and ties and thick glasses and coded in machine language and assembler and FORTRAN and half a dozen ancient languages now forgotten. These were the hacker culture's precursors, the largely unsung protagonists of its prehistory.

From the end of World War II to the early 1970s, in the great days of batch computing and the "big iron" mainframes, the Real Programmers were the dominant technical culture in computing. A few pieces of revered hacker folklore date from this era, including the well-known story of Mel (included in the Jargon File), various lists of Murphy's Laws, and the mock-German "Blinkenlights" poster that still graces many computer rooms.

[…]

What did the "Real Programmer" culture in was the rise of interactive computing, the universities, and the networks. These gave birth to a continuous engineering tradition that, eventually, would evolve into today's open-source hacker culture.

(source: "A Brief History of Hackerdom" in Open Sources: Voices from the Open Source Revolution. Chris DiBona, Sam Ockman, and Mark Stone (eds.), 1999: O'Reilly and Associates.)

Early Free Software Sharing Community

Richard Stallman, founder of the GNU project and developer of the GCC compiler and Emacs editor, writes about the first free software sharing community:

When I started working at the MIT Artificial Intelligence Lab in 1971, I became part of a software-sharing community that had existed for many years. Sharing of software was not limited to our particular community; it is as old as computers, just as sharing of recipes is as old as cooking. But we did it more than most.

The AI Lab used a time-sharing operating system called ITS (the Incompatible Timesharing System) that the Lab's staff hackers had designed and written in assembler language for the Digital PDP-10, one of the large computers of the era. As a member of this community, an AI Lab staff system hacker, my job was to improve this system.

We did not call our software "free software," because that term did not yet exist, but that is what it was. Whenever people from another university or a company wanted to port and use a program, we gladly let them. If you saw someone using an unfamiliar and interesting program, you could always ask to see the source code, so that you could read it, change it, or cannibalize parts of it to make a new program.

(source: "The GNU Operating System and the Free Software Movement" in Open Sources: Voices from the Open Source Revolution. Chris DiBona, Sam Ockman, and Mark Stone (eds.), 1999: O'Reilly and Associates.)

Transition/Interregnum

Late 1970s - early 1980s

This period is marked by the collapse of the first software sharing commmunity due to the commercialisation of the major Computing Laboratories (e.g. MIT AI Lab, Stanford Lab, etc).

Stallman writes:

The situation changed drastically in the early 1980s when Digital discontinued the PDP-10 series. Its architecture, elegant and powerful in the 60s, could not extend naturally to the larger address spaces that were becoming feasible in the 80s. This meant that nearly all of the programs composing ITS were obsolete.

The AI Lab hacker community had already collapsed, not long before. In 1981, the spin-off company Symbolics had hired away nearly all of the hackers from the AI Lab, and the depopulated community was unable to maintain itself. (The book Hackers, by Steve Levy, describes these events, and gives a clear picture of this community in its prime.) When the AI Lab bought a new PDP-10 in 1982, its administrators decided to use Digital's non-free timesharing system instead of ITS.

The modern computers of the era, such as the VAX or the 68020, had their own operating systems, but none of them were free software: you had to sign a nondisclosure agreement even to get an executable copy.

This meant that the first step in using a computer was to promise not to help your neighbor. A cooperating community was forbidden. The rule made by the owners of proprietary software was, "If you share with your neighbor, you are a pirate. If you want any changes, beg us to make them."

Raymonds writes about the period as being characterised by "three cultures, overlapping at the edges but organized around very different technologies." These cultures were:

1) the ARPAnet/PDP-10 engineers whose work brought forth the Internet

2) the Unix and C crowd

3) the anarchic horde of early microcomputer enthusiasts who were bent on taking computer power to the people. (e.g. Apple, DOS)

In other words, when the 1980s came, the computing community was hard at work developing technologies that will, twenty years later, define much of life as we know it now.

This was also the period when hackers started to consciously develop free software as a concept (philosophical as well as political) and as method.

At the forefront of the Free Software movement was Stallman, the Free Software Foundation, and programmers who were hacking free Unix kernels and components of a free operating system)

Stallman designed a set of rights that he felt all users should have. These rights are codified in the GNU General Public License or GPL, also refered to as "copyleft." The Free Software movement also produced many important works of free software such as the GNU C Compiler and the GNU Emacs.

The Linux Breakthrough

1990s

Every computer user needs an operating system. If there is no free operating system, then one has no option but to use proprietary software. So the first item on the agenda of the Free Software movement was to develop a free operating system.

An operating system is composed of a kernel, compilers, editors, text formatters, and many other things that will make a computer work for humans. Writing a whole operating system is therefore a very large job. In 1983, the Free Software Foundation launched the GNU Project to develop such a free operating system. By the 1990s, the GNU Project had either found or written all the major components of a free operating system except one--the kernel.

Then came a Helsinki student by the name of Linus Torvalds who in 1991 began developing a free Unix kernel for 386 machines. Torvalds combined Linux with the almost-complete GNU system to come up with a complete operating system: a Linux-based GNU system.

Originally Linux was targeted at only one architecture: the Intel 386. Today however, Linux runs on many computing machines: from PalmPilots to workstations, from embedded systems to robotic devices. It has millions of users, thousands of developers, and a growing market.

But perhaps, the most important feature of Linux is not technical but sociological.

Raymonds write:

Until the Linux development, everyone believed that any software as complex as an operating system had to be developed in a carefully coordinated way by a relatively small, tightly-knit group of people. This model was and still is typical of both commercial software and the great freeware cathedrals built by the Free Software Foundation in the 1980s; also of the freeBSD/netBSD/OpenBSD projects.

Linux evolved in a completely different way. From nearly the beginning, it was rather casually hacked on by huge numbers of volunteers coordinating only through the Internet. Quality was maintained not by rigid standards or autocracy but by the naively simple strategy of releasing every week and getting feedback from hundreds of users within days, creating a sort of rapid Darwinian selection on the mutations introduced by developers. To the amazement of almost everyone, this worked quite well.

Selling the Radical

1998 - present

At the start of the 1990s, the Internet was well on its way to spreading across the globe, practically duct-taped using free software.

However, very few people outside of the almost rarified circle of hackers and programmers were aware of what free software was.

On January 22, 1998, Netcape the main competitor of Microsoft in the Web Browser front announced that it will release the source code for Navigator. This was the one event that alerted mainstream media and the public that something out of the ordinary was about to happen or is already happening.

Soon after, advocates who have for quite sometime already been trying to "mainstream" free software coined the term "open source." Spirited debate within the hacker community ensued. Which is it: "open source" or "free software"? This terminological debate is understood to be a proxy for wider issues about the free software community's relationship to the business world.

The term "Open Source" begins to show up in trade-press articles relating to Linux and the Netscape release. By the time Netscape finally releases the Navigator's source codes in March 31, 1998, the debate within the hacker community wound down, with "open source" emerging as a clear majority choice. The use of the term "free software" began a reciprocal decline.

The Free Software movement on Open Source:

"The Free Software movement and the Open Source movement are like two political parties within our community.

"Radical groups are known for factionalism: organizations split because of disagreements on details of strategy, and then hate each other. They agree on the basic principles, and disagree only on practical recommendations; but they consider each other enemies, and fight each other tooth and nail.

"For the Free Software movement and the Open Source movement, it is just the opposite on every point. We disagree on the basic principles, but agree on most practical recommendations. We work together on many specific projects.

"In the Free Software movement, we don't think of the Open Source movement as an enemy.

"The enemy is proprietary software. But we do want people in our community to know that we are not the same as them! "

(source: Why Freedom is Better than Open Source: http://www.gnu.org/ philosophy/free-software-for-freedom.html)

The Open Source Movement on Free Software:

(From: Why "Free Software" Is Too Ambiguous, http://www.opensource.org/advocacy/free-notfree.html)

"What Does "Free" Mean, Anyway?

"Some software is called "free" because it costs no money to download or use – but source code is not available. The license that covers Microsoft Internet Explorer is a good example.

"Some software is called "free" because it (and the source code for it) has been placed in the "public domain", free from copyright restrictions.

"A lot of software is called "free" even though the source code for it is covered by copyright and a license agreement. The license usually includes a disclaimer of reliability, and may contain additional restrictions.

"The restrictions on non-public-domain "free" software range from mild to severe. Some licenses may prohibit (or require a fee for) commercial use or redistribution. Some licenses may prohibit distributing modified versions. Some licenses may contain "copyleft" restrictions requiring that the source code must always be made available, and that derived products must be released under the exact same license. Some licenses may discriminate against individuals or groups.

"And Who Does It Mean It To?

"Many different groups or people use different definitions of what constitutes "free software."

"As a result, communication is hampered due to arguments over whether a particular piece of software is "free" or not. This is bad enough when the argument is between people who basically agree that source should be available, but it could get worse.

"If the "free software" label were ever to catch on in the corporate world, it all would be all too easy to imagine Microsoft claiming Internet Explorer is "free software" because its cost is zero dollars. Would we really want that?"

* * * * * * *

From: Shut Up and Show Them The Code by Eric S. Raymonds. http://tuxedo.org/~esr/writings/shut-up-and-show-them.html)

Note: RMS is Richard M. Stallman
"The real disagreement between OSI and FSF, the real axis of discord between those who speak of "open source" and "free software", is not over principles. It's over tactics and rhetoric. The open-source movement is largely composed not of people who reject RMS's ideals, but rather of people who reject his rhetoric.

[…]

"OSI's tactics work. That's the easy part of the lesson. The hard part is that the FSF's tactics don't work, and never did. If RMS's rhetoric had been effective outside the hacker community, we'd have gotten where we are now five or ten years sooner and OSI would have been completely unnecessary (and I could be writing code, which I'd much rather be doing than this...).

"None of this takes anything away from RMS's prowess as a programmer or his remarkable effectiveness at mobilizing other hackers to do good work. Emacs and gcc and the GNU code base are an absolutely essential part of our toolkit and our cultural inheritance, for which RMS deserves every praise (which is why I led a standing ovation to him at last LinuxWorld after observing that "without RMS, none of us would be here today"). But as an evangelist to the mainstream, he's been one fifteen-year long continuous disaster.

"It's important for all of us hackers to be clear about that, because RMS's rhetoric is very seductive to the kind of people we are. We hackers are thinkers and idealists who readily resonate with appeals to "principle" and "freedom" and "rights". Even when we disagree with bits of his program, we want RMS's rhetorical style to work; we think it ought to work; we tend to be puzzled and disbelieving when it fails on the 95% of people who aren't wired like we are.

"So when RMS insists that we talk about "computer users' rights", he's issuing a dangerously attractive invitation to us to repeat old failures. It's one we should reject -- not because his principles are wrong, but because that kind of language, applied to software, simply does not persuade anybody but us. In fact, it confuses and repels most people outside our culture.

"RMS's best propaganda has always been his hacking. So it is for all of us; to the rest of the world outside our little tribe, the excellence of our software is a far more persuasive argument for openness and freedom than any amount of highfalutin appeal to abstract principles. So he next time RMS, or anybody else, urges you to "talk about freedom", I urge you to reply "Shut up and show them the code."

Linux and Open Source are now Mainstream

Cashing in on Linux

In two years, open source from being a mere phrase became a global force which is opening new opportunities for profit-seekers as well as the social movements.

Big Business sees in Linux new markets and enterprises, a way to salvage falling investments and drive profit-margins up.

Recent events point to Big Business' continuing optimism to Linux' capacity to bring on commerce:

1. The IDC predicts the market for database software running on Linux computers will grow from $42 million in 2000 to $7.8 billion in 2005.

Source: http://news.cnet.com/news/0-1003-200-6375380.html?tag=st.lx.1491268.today.1003-200-6375380

2. Client Operating Environment (COE) revenues generated from Linux and other Open Source environments will increase from $36.9 million in 1999 to $93.3 million in 2004.

Source: http://www.idc.com:8080/software/press/PR/SW071700PR.stm

3. IBM announced in April 2001 its plans to invest US$1 billion to making all its products Linux ready and developing skills to implement Linux solutions. US$200 million will go to Asia-Pacific. Experts estimate that Linux-related hardware and software will create market worth US$4 billion in 2001, or twice the size of 2000.

Source:

http://www.nikkeibp.asiabiztech.com/wcs/leaf?CID=onair/asabt/fw/133671

http://linuxtoday.com/news_story.php3?ltsn=2001-04-09-015-21-PS-BZ

For a summary of how big business behaved in the first year of the Open Source campaign, read: History of the Open Source Initiave, http://www.opensource.org/docs/history.html

Governments are Also Taking Notice

Governments along with grassroots movement in developing countries see in Linux a tool that can narrow the digital divide. Some of the countries which are actively adapting open source into their national computing polcies are:

China - active endorsement of open source as alternative to Microsoft and using it for their school system

Cuba - active endorsement of open source as alternative to Microsoft

Malaysia - active endorsement of open source

Mexico - use of open source tools for their school system

Argentina - free software law which orders the Federal government to use only free software.

Making it More User-friendly

One of the remaining hurdle for Linux/GNU is usability. Many efforts are underway to develop user-friendly interface as well as productivity applications (e.g. word processing, spreadsheets, etc) commonly used by non-technical end-users.

Initiatives to Make Linux/GNU User-friendly:

Note: the following can all be downloaded from http://download.cnet.com/

Or from their respective home sites.

1. Applixware

Word processing, presentations, and graphics are some of the elements in this office suite. The word processing componenent includes desktop publishing features and both the WP and graphics components import/export many common file formats.

Company: Applix

Version: 5.0 Date

File size: 73.7MB

Minimum requirements: Pentium-166, Linux for Intel, X Window System, 32MB RAM, 236MB disk space, GTK+ 1.2.6

Dowload: Demo, 30-day trial

http://www.applixware.com

2. Corel LINUX OS

Four-step installation program, not so complicated configuration and point-and-click interface. Comes with a file manager, system updates utility, a Web browser and e-mail, and a graphical desktop environment. Corel LINUX OS Second Edition combines Linux power with intelligent simplicity.

Company: Corel Corp.

Version: 1.2

File size: 452MB Approx.

Minimum requirements: Pentium, 24MB RAM, 800MB disk space, PCI VGA 2MB video card, CD-R or CD-RW drive

Download: Free

http://linux.corel.com/download/

3. StarOffice for Linux

Office Suite with word processing, spreadsheet, vector drawing, presentations, database, web publishing, file manager, email client, ftp client, web browser, etc. This can be downloaded freely. It can save and read files in Microsoft file formats (e.g. .doc, .xls, .ppt, etc.)

Company: Sun Microsystem

Version: 5.2

File size: 97.6MB

Min operating system: Linux for Intel, kernel 2.0.x, X Windows, glibc 2.1.1, Intel Pentium-233, 64MB RAM, 240MB disk space, SVGA, 800 x 600

Download: Free

http//www.staroffice.com

--- end ---
1

