WENT 2001 – Reference Reading

Track 1: Web-based Information Service

Developing Web Specifications

Developing Web Specifications

This session provides more detail about communication and documentation components of the information architecture process. It borrows methodologies from software development, as these were established before the Web. While these techniques provide a useful framework, the details should not be prescriptive. The Web is a mixture of engineering and the arts. Use what best fits the project you’re working on.

Remember: As facilitator or developer of a web-based information service, the most important concern is building relationships with people – both within the organisation (utilise multidisciplinary skills), and outside the organisation (develop usable and accessible web services).

What are Specifications?

Specifications are a detailed, exact statement of particulars, especially a statement prescribing materials, dimensions, and quality of work for something to be built, installed, or manufactured.

Source: dictionary.com

The Design Document from the Information Architecture session is actually the basis for a specification. It elicits all the important background information about goals, audience, content and flowcharts.

Specifications can and do take many formats, and are written for various purposes. There is no one standard format for web site specifications. For example, web development companies might devise their own templates and specification formats to document work done for clients, and the basis for a maintenance guide as the client takes over management of the site; a university might publish web specifications that are recommended standards for educators building online courseware.

The following section focuses on the methodologies software engineers commence specification: the requirements that can be tracked through the software life cycle.

Requirements (Requirements Specifications)

Requirements are the first stage of software development, which defines what the potential users want the system to do. Requirements should be testable, and will usually be traceable in later development stages. A common feature of nearly all software is that the requirements change during its lifetime.

Source: dictionary.com

· Requirements are a specification of what should be implemented. They define the project’s intended outcomes.
· Requirements detail what should be built. Specifications detail how.
· Requirements should not contain design considerations, but focus on understanding and describing the intended external behaviours of the system.

· Requirements provide the foundation for testing, to determine whether the project has met its requirements. Example: while a Web site may work on a technical level, it may not meet its user requirements.

What do specifications look like?

Modify the following example to suit your needs.

Software Requirements Specification template (based on IEEE830-1998 standard):

1. Introduction

1.1. Purpose

1.2. Document Conventions

1.3. Intended Audience and Reading Suggestions

1.4. Product Scope

1.5. References

2. Overall Description

2.1. Product Perspective

2.2. Product Functions

2.3. User Classes and Characteristics

2.4. Operating Environment

2.5. Design and Implementation Constraints

2.6. Assumptions and Dependencies

3. External Interface Requirements

3.1. User Interfaces

3.2. Hardware Interfaces

3.3. Software Interfaces

3.4. Communications Interfaces

4. System Features

4.1. System Feature X

4.1.1. Description and Priority

4.1.2. Stimulus/Response Sequences

4.1.3. Functional Requirements

5. Other Nonfunctional Requirements

5.1. Performance Requirements

5.2. Safety Requirements

5.3. Security Requirements

5.4. Software Quality Attributes

5.5. Business Rules

5.6. User Documentation

6. Other Requirements

Appendix A: Glossary

Appendix B: Analysis Models

Appendix C: To-Be-Determined List

Developing the requirements

A process

1. Define the project’s vision and scope

2. Identify the main audience groups

3. Identify appropriate representatives from each audience group

4. Identify the requirements decision makers and their decision-making process

5. Select the elicitation techniques that you will use

6. Apply the elicitation techniques to develop and prioritise the audience scenarios for portions of the project

7. Gather information about quality attributes and other non-functional requirements from users

8. Elaborate the audience scenarios into the necessary functional requirements

9. Review the audience descriptions and functional requirements

10. Develop analysis models, if necessary, to clarify the participants’ understanding of portions of the requirements

11. Develop and evaluate user interface prototypes to help visualize requirements that are not easily understood

12. Develop conceptual test cases from the audience scenarios

13. Use the test cases to verify the audience scenarios, functional requirements, analysis models and prototypes

14. Repeat steps 6 to13 before proceeding with design and construction of each portion of the system.

Facilitation guidelines

A project will only succeed if there is good communication. Here are some tips for successful facilitation between the development team and project stakeholders:

· Create and nurture an environment that encourages thorough exploration of the issues

· Don’t assume all participants share the same definitions of significant terms. To facilitate clear communication, you may need to create a glossary.

· Discuss all issues that might relate to the project. Make sure everyone understands that discussion of possible features or functions is not a commitment to include it in the project.

· Wish lists should be focused and prioritized.

· Focus on collaborative problem solving. Don’t just take notes of what participants say they need. Your role is to get beneath the surface of their initial requirements and find their true needs.

· Ask open-ended questions to help you understand the existing workflow and organisational procedures, to see where this project can enable or improve performance. Imagine yourself performing the users’ tasks

· Note the source of each requirement (who said what) so you can get trace it back for verification

· Question assumptions, particularly conflicting assumptions. Watch for unstated assumptions.

· Try to understand the thought processes that led users to present their requirements. Step through the processes and decisions involved in performing a task. Flowcharts are useful here.

· Don’t get distracted by detail at this early stage. Details may obscure more fundamental issues.

· Keep the agenda of each meeting or interview manageable.

· After each interview or meeting, make a list of what was discussed and ask the participants to review and make corrections. Early and frequent review is important, because only those providing the requirements can determine whether they were accurately reported.

Approaches for managing requirements

Requirements and project planning

· Accurate project planning requires:

· Clear estimated size of the project

· Understanding the capacity of the production team based on past performance

· Comprehensive list of the tasks needed to completely implement and verify a feature or use case.

· Experience!

· It’s easier to define requirements before making detailed schedules and commitments.

· If a schedule has been set before the requirements are complete, negotiate which requirements are achievable within the timeframe and resources available.

· Define priorities. This will help determine what to include in each development phase.

· Keep a track of the time it takes you and colleagues to complete certain tasks. This will assist in future estimations and schedules.

· Build some contingency into your schedule.

Requirements and Designs, Code

· Requirements should be independent of design considerations.
· Include designers and developers (the production team) in the requirements development process to ensure requirements are realistic

· Don’t jump straight from the requirements into code. Think about the most effective way to construct the system before actually building it. Thank about alternatives. Build flowcharts and look for patterns or duplications.

· Make several versions of any design. Reiterating a design will help to refine it. With each iteration, the designer refines initial concepts, and during this time, more information becomes available.

· Study the prototype. Does it help you understand the requirements better?

· Ensure the design accommodates all the functional requirements and nothing unnecessary.

· If you find confusion or ambiguity trying to meet requirements, stop working until you can seek clarification.
Requirements and Testing

· Include testers in the requirements process so they advise whether requirements can be verified and tested against.

· As each requirement becomes stable, testers should consider how they will verify it.

· Testing should occur not just at the user level, but also aspects invisible to the user.

References

Wiegers, Karl E., Software Requirements, Microsoft Press, 1999, Washington

4

