WENT 2001 – Reference Reading

Track 3: Managing Information Using Databases

Structured Query Language (SQL)

Structure Query Language (SQL)

Syntax Conventions

This manual uses certain typographical conventions:

constant

Constant-width font is used for command names and options; SQL statements; database, table and column names. Example: "SELECT * FROM PERSON;''

<col_name>

Constant-width font with surrounding triangular brackets (< >) is used to denote a user supplied value. Example: "INSERT INTO <tbl_name> (<col_name>,…) VALUES (<expression>,…);"

[<col_constraint>]
Constant-width font enclosed with angular brackets ([]) is used to denote item can be omitted, i.e. optional. Example: "CREATE [TEMPORARY] TABLE <tbl_name> (<col_name> <column type> [<col_constraint>]).''

|
constants enclosed separated by a vertical bar denotes either of the value can be used. Example: "[NOT NULL | NULL].''

Short names used

db_name - database name

col_name - column name

col_constraint - column constraint

tbl_name - table name

SQL Basics

SQL is the most known and developed language that implements the relational database operations (i.e. select, project, join, union, intersection, and difference).

SQL is derived from Structured Query Language which was first used with IBMs experimental RDBMS called SYSTEM R (now known as DB2). Correctly pronounced as SEQUEL.

SQL is divided into categories:

· Data Definition Language (DDL) - language for defining the database and its objects like table, index, view

· Data Manipulation Language (DML) - language for manipulating database objects. It consists of commands to insert, update, delete a row(s) and retrieve them from a table or view or multiple tables/views.

Things to remember with SQL commands:

· A SQL command is not case sensitive, which means the two SQL instructions are the same:

SELECT * FROM PERSON;

or select * from person;

· A SQL command always ends with a semi-colon (;); the semi-colon is a signal for SQL command interpreters like mysql to execute your SQL instruction.

WENDY ERD

Some DML Commands

SELECT

PURPOSE:

To retrieve rows selected from one or more tables. select_expression indicates the columns you want to retrieve. SELECT may also be used to retrieve rows computed without reference to any table.

SYNTAX:

SELECT [DISTINCT | DISTINCTROW | ALL]

 select_expression,...

 [FROM table_references

 [WHERE where_definition]

 [GROUP BY col_name,...]

 [HAVING where_definition]

 [ORDER BY {unsigned_integer | col_name | formula} [ASC | DESC] ,...]

select_expression:

col_name,…

or col_name1*col_name2,…

or 1+1

(a) To list all person information.

SELECT * FROM person_profile;

(b) To list the names alphabetically from the PERSON_PROFILE table.

SELECT

title, firstname, othername, lastname

FROM person_profile

ORDER BY lastname, firstname;

(c) To list the name, birthday, age in the PERSON table.

SELECT

title, firstname, lastname, birthday,

(TO_DAYS(NOW()) - TO_DAYS(birthday))/365 AS age

FROM person_profile;

In the example (c), to get the age the Birthday column is subracted from the NOW(), which is a MySQL function that returns the current date, and then the difference is divided by 365 (number of days in a year). The age computation expression is then given an alias AGE.

TO_DAYS(<expression>) is another MySQL function that converts the date field into number of days.

(d) To list the institutions arranged by type of organization.

SELECT

org_type, org_name

FROM org_profile;

(e) To list the number of institutions per type of organization arranged from most to the least number of institutions.

SELECT

org_type, count(*) as frequency

FROM org_profile

GROUP BY org_type

ORDER BY frequency;

(f) To individuals with her/his institution affiliation and the corresponding position. Also, arrange the list according to institution name and then name of individuals.

SELECT

org_name, concat(title,’ ’, firstname,’ ’,lastname) as name, org_position

FROM org_profile AS org, person_profile AS person

WHERE org.org_id = person.org_id

ORDER BY orgname, lastname, firstname;

In example (f), two tables are required: ORG_PROFILE to get the institution name and PERSON_PROFILE to get the names of affiliated individuals. Note that in the example ORG_PROFILE table is given an alias of org , whereas, PERSON_PROFILE table takes the alias of person.

Remember that in our database design we have identified a relation between PERSON_PROFILE and ORG_PROFILE, and we recorded this by placing an org_id in the PERSON_PROFILE entity.

In SQL, we define an inner join relation by including a WHERE clause and equating point of relations between the tables , e.g. person.org_id = org.org_id

INSERT

PURPOSE:

To add rows into an existing table. The INSERT ... VALUES form of the statement inserts rows based on explicitly-specified values. The INSERT ... SELECT form inserts rows selected from another table or tables.

SYNTAX:

INSERT [INTO] <tbl_name> [(<col_name>,...)]

 VALUES (<expression>,...),(...),...;

or INSERT [INTO] <tbl_name> [(<col_name>,...)]

 SELECT ...;
EXAMPLE:

To add another person record in the PERSON_PROFILE table whose name is Ms. Sarah Escandor and who lives in the Philippines (Philippines’ country id is 1 in REF_COUNTRY table). Note that for every record inserted you need to include all the mandatory columns (those that are defined as “NOT NULL” during table creation).

SQL STATEMENT:

INSERT INTO person_profile (person_id,title,firstname,othername,lastname,mail_country)

VALUES

(100,'Ms.','Sarah',’Doronila’,'Escandor',1);

UPDATE

PURPOSE:

To update columns in existing table rows with new values. The SET clause indicates which columns to modify and the values they should be given. The WHERE clause, if given, specifies which rows should be updated. Otherwise all rows are updated.

SYNTAX:

UPDATE tbl_name SET col_name1=expr1,col_name2=expr2,...

 [WHERE where_definition];
EXAMPLE:

To update the organization affiliation and position information of person “Sarah Escandor”, which is an existing record in the PERSON_PROFILE table.

SQL STATEMENT:

UPDATE person_profile SET

org_id=1, org_position='Faculty'

WHERE firstname=’Sarah’ and lastname=’Escandor’;

DELETE

PURPOSE:

To delete rows from tbl_name that satisfy the condition given by where_definition, and returns the number of records deleted.

Caution: If you issue a DELETE with no WHERE clause, all rows are deleted.

SYNTAX:

DELETE FROM tbl_name

 [WHERE where_definition] [LIMIT rows];

EXAMPLE:

To delete the record(s) whose firstname is “Sarah”.

SQL STATEMENT:

DELETE FROM PERSON WHERE firstname='Sarah';

Some DDL Commands

CREATE DATABASE

PURPOSE: To create a database with the given name.
SYNTAX:

CREATE DATABASE <db_name>

EXAMPLE:

To create a database named “WENDY”.

SQL STATEMENT:

CREATE DATABASE WENDY;

CREATE TABLE

PURPOSE: To create the table with the given name in the current database and define its columns and constraints.

SYNTAX:

CREATE [TEMPORARY] TABLE <table name> (<col_name> <column type> [<column_constraint>]

{,<column name> <column type> [<attribute constraint>]})

[<table_options>] [select_statement];

TEMPORARY

Creates a temporary table when used. A temporary table will automatically be deleted if the connection to database server dies.

column_constraint:

[NOT NULL | NULL] [DEFAULT default_value] [AUTO_INCREMENT] [PRIMARY KEY] [REFERENCES tbl_name [(index_col_name,…)]]

or PRIMARY KEY (index_col_name,...)

or INDEX [index_name] (index_col_name,...)

or CHECK (expr)

index_col_name:

col_name[(length)]

EXAMPLE:

To create a table named “PERSON_PROFILE” with columns for id, name, organisation affiliation, mailing address, contact numbers, birthday and gender. The primary key column is ID and the other mandatory columns are firstname, lastname, mail_country, and gender. The gender columns has a default value of ‘Female’.

SQL STATEMENT:

CREATE TABLE PERSON_PROFILE (

person_id
integer

not null unique,

firstname
varchar
(
50
)
not null,

lastname
varchar
(
50
)
not null,

othername
varchar
(
50
)
,

title
varchar
(
20
)
,

org_id
integer

,

org_position
varchar
(
100
)
,

mail_add1
varchar
(
200
)
,

mail_add2
varchar
(
200
)
,

mail_add3
varchar
(
200
)
,

mail_country
varchar
(
20
)
not null,

mail_postcode
varchar(
10
)
,

contact_phone
varchar
(
50
)
,

fax_num
varchar
(
50
)
,

mobile_phone
varchar
(
50
)
,

pager_num
varchar
(
50
)
,

email_add
varchar
(
100
)
,

person_url
varchar
(
100
)
,

birthday
date

,

gender
varchar
(
6
)
not null default ‘Female’

);

Appendix A

The table shows some operators which can be used in select_expression or where_definition:

Operators
Sample SQL expression
Explanation

Arithmetic Operators

+
Select 85 + 10;
To add values or columns

-
Select 85 - 10;
To subtract values or columns

*
Select 85 * 10;
To multiply values or columns

/
Select 85 / 10;
To divide values or columns

Comparison Operators

= (equal to)
Select * FROM person_profile WHERE firstname='Sarah';
To list all individuals from PERSON_PROFILE table whose firstname is Sarah

<> (not equal to)

!=
Select * FROM person_profile

WHERE

firstname!='Sarah';
To list all individuals from PERSON_PROFILE table whose firstname is not Sarah

<= (less than or equal to)
Select * FROM

person_profile

WHERE

(TO_DAYS(NOW()) - TO_DAYS(BIRTHDAY))/365

<= 30;
To list all individuals from PERSON_PROFILE table whose computed age is less than or equal to 30

< (less than)
Select * FROM person_profile

WHERE

(TO_DAYS(NOW()) - TO_DAYS(BIRTHDAY))/365

< 30;
To list all individuals from PERSON_PROFILE table whose computed age is less than 30

>= (greater than or equal to)
Select * FROM person_profile

WHERE

(TO_DAYS(NOW()) - TO_DAYS(BIRTHDAY))/365

>= 30;
To list all individuals from PERSON_PROFILE table whose computed age is greater than or equal to 30

> (greater than)
Select * FROM person_profile

WHERE

(TO_DAYS(NOW()) - TO_DAYS(BIRTHDAY))/365

> 30;
To list all individuals from PERSON_PROFILE table whose computed age is greater than 30

IS NULL
Select * from PERSON

WHERE

BIRTHDAY IS NULL;
To list all individuals without BIRTHDAY data from PERSON table

IS NOT NULL
Select * from PERSON

WHERE

BIRTHDAY IS NOT NULL;
To list all individuals with BIRTHDAY data from PERSON_PROFILE table

expr BETWEEN min AND max
Select * from person_profile

WHERE

BIRTHDAY BETWEEN "1970-01-01" AND "1979-12-31";
To list all individuals born from 1970 to 1979

expr IN (value,...)
Select firstname

from person_profile

WHERE

MONTHNAME(BIRTHDAY) IN ('June','July','August');
To list all the firstname of individuals from PERSON_PROFILE table whose month of BIRTHDAY is any of the following: June, July or August.

String Comparison functions

expr LIKE pat [ESCAPE 'escape-char']

Select * from person_profile

WHERE

firstname LIKE '%Rose%'
To list all individuals with firstname that has Rose word from PERSON_PROFILE table.

With LIKE you can use the following two wildcard characters in the pattern

% - matches any number of characters.

_ - matches exactly one character.

References

Elmasri, R. & Navathe, S. (1994) Fundamentals of database systems (2nd ed). California: Benjamin/Cummings Publishing Company, Inc.

MySQL reference manual for 3.23.10-alpha [Online]. Available: http://www.softagency.co.jp/MySQL/doc.html.

Yarger, R.J., Reese, G. & King, T. (1999) MySQL & mSQL: databases for moderate-sized organizations and web sites. California: O'Rielly & Associates, Inc.

has

located in

can have

belongs to

REF_ORGTYPE

refers to

belongs to

may have

refers to

may have

belongs to

lives in

has

can have

may belong to

REF_COUNTRY

REF_EXPERTISE

PERSON_EXPERTISE

REF_INTEREST

PERSON_INTEREST

ORG_PROFILE

PERSON_PROFILE

PAGE
10

