WENT 2001 - Reference Reading
Track 3: Managing Information Using Databases

Survey of Scripting Languages

Survey of Scripting Languages

Choosing a Scripting Language.

Developing a web page, using such a powerful tool as scripting, you would wish to use some databases on your site. Sometimes you need development tools when you are really looking for a development process. All these tools in the world won’t help you if you don’t have a model for designing systems, developing systems, making and testing releases. Also you could have ordered some company or others to develop for you a system. But it would cost you also you wouldn’t get free of the defining the system requirements.

Before you choose a scripting language, you need to examine a number of external factors. Who is going to be maintaining the site? What are their skills and computing resources? Where is the site going to be hosted? What scripting tools do they support? What database system will be used? What drivers (the software which connects your web site to the database) are available, and for what platforms?

Programming languages come in a lot of forms, and have quite a variety of strengths and weaknesses. Some languages were designed from whole cloth, some have grown into being over a number of years. Sometimes that shows, sometimes it doesn't. There are two main types of the programming language: "interpreted" and "compiled".

Interpreted languages provide instant gratification. You create a code, and then you run it, and it does something right away. Compiled languages typically have to be run through a compile phase which translates them into something the machine understands, and often also a "link" phase that connects them to all the libraries of useful utilities on the machine. Interpreted languages get around this by having a master program (called the interpreter) that reads the program and executes it on the fly. "C", "C++", "Pascal", and "Fortran" are compiled languages. "Perl", "TCL", "Python" (and "JavaScript" for that matter) are interpreted languages. "Java" is a special case. Technically it's an interpreted language, but actually it first has to be compiled into an intermediate form, and then that is interpreted, so for the web we'll consider it interpreted.

The second issue is tag-based or not-tag-based A tag-based language attempts to fit into the familiar HTML model by adding a bunch of HTML-like tags that add structure and actions to a web page. However unlike the other tags, they get interpreted by some program on the server, not by the browser. The browser never sees these tags. The big advantage of tags is that adding a few of them here and there in your web page is really simple. Tag-based languages make getting started with web-scripting pretty easy, but they make complicated things hard to support. "Cold Fusion" is the only completely tag-based solution described here, although virtually all of the others have a few special tags. Tag-based languages were popular when the web was starting, but now they seem to be mostly restricted to specialized solutions such as shopping cart or other software. (On the other hand, XML-based solutions are very much like the old tag-based ones.)

(Source: http://commons.somewhere.com/buzz/2000/scripting.html)
Here's a matrix of the options and I will brief you with description of some of the major scripting languages in use on and on the web.

Some notes on database connectors.

JDBC

JDBC drivers come in several different flavors. Type 4 drivers are pure Java and talk directly to the database server. Type 3 drivers are pure driver, but talk to a middleware piece. Type 2 drivers have a Java component that in turn calls a local library on the same machine--that library talks to the database server. Type 1 drivers have a Java component that in turn calls local ODBC libraries, which then contact the database server.

ODBC

ODBC is a Microsoft standard for connecting to databases. All major database vendors provide ODBC libraries on NT. Some provide ODBC drivers for the Mac. On Linux there are ODBC drivers for Oracle and Sybase, connecting to other databases is more problematic. Probably the most common solution is a proxy driver (available from a third party). It takes database requests on the Linux box and sends them to the other half of the code on the NT machine, where they are then translated into native ODBC calls on that machine.

Perl-based

Over time people have written several database-specific drivers for Perl, however the most common interface is through the DBI API. This is a database-neutral API (like ODBC, but simpler and more SQL oriented) that allows vendor-specific extensions. There are drivers for everything from comma-separated text files (handy for testing things out) to all the major vendors. The only vendor missing from the equation is Microsoft. Fortunately you can usually use Sybase-based drivers to access MS SQL, although you may not have access to the latest functionality. However if you want a 100% reliable solution you will probably want to use a commercial third-party driver. On NT Perl can also use any ODBC database.

Native

These offer (one hopes) the highest performance and the best access to custom features in the database—on the other hand, they lock you into using that database and make migration to other systems much harder.

In general, the fewer the layers the better. However a database-independent solution such as Perl DBI, ODBC or JDBC will give you more flexibility in the long run. Do not, however, expect to be able to transparently move between different database servers without some amount of work. Any reasonably sized project will make use of features such as stored procedures, automatic key generation or other database-specific solutions.

(Source: http://commons.somewhere.com/buzz/2000/scripting.html)

Scripting language cases:

JavaScript

The official standard is called ECMAScript (ECMA is a European standards organization). Designed by Netscape and based roughly on C, it was rapidly retargeted to look more like Java when Java came out. The two are not related in any way, shape or form other than a few similarities in syntax. Although JavaScript is primarily a Browser extension language, and is interpreted by the user's web browser, it can also be interpreted by some web servers to add server-based scripting. Additionally there are a few companies that sell JavaScript interpreters that can be embedded in other applications as extension languages.

Advantages:
Simple: Relatively easy to program, as a programming goes
Speed: As a client side solution it is much faster than CGI

Utility: Perfect for checking a surfer’s input in a form; good for creating unique display effects and simple interactive games.

Disadvantages:

Security: History of security holes that violate privacy

Compatibility: Hard to developers to make sure their scripts work properly an all major browser

Accessibility: Many surfers don’t have active script-enabled browsers

Limited: Can’t save information

(source: E.Stephen Mack, Janan Platt HTML 4.0, BPB publications)

Java

Designed by Sun as an interpreted language for TV set top boxes, but quickly re-targeted to web browsers (where it never really took off) and then to server-side software (particularly for intranets) where it has been very successful. All the power of C++, without all the mistakes.

Advantages :

Useful: Unique visual animation effects, lightweight applications, and all types of interactive games and programs.

Popular: knowing Java can enhance your resume

Disadvantages:

Difficult: Programming in Java requires knowledge of advanced programming concepts

Slow: With current Java implementations, applets take a long time to download and compile.

High overhead: Programs that are simple for active scripts are difficult with Java, since you must program the interface (such as buttons and forms) yourself.

Limited: Can’t save information, can’t easely affect rest of page.

Accessibility: Many surfers don’t have Java enabled browsers.

Compatibility: Java applets don’t’ always work the same on every platform

Security: History of security holes that violate privacy

(Source: E.Stephen Mack, Janan Platt HTML 4.0, BPB publications)

JSP

Java Server Pages are tightly integrated with Java Servlets—in a sense it's a way of creating a Java Servlet on the fly, where each page becomes it's own servlet. Java code fragments are embedded in the web page, and the server compiles them on the fly.
Java servlets and Jsp are server side technologies that use the Java language. Sun has introduced a series of new APIs that help connect programs with enterprice services and data. It is difficult for a novice programmer to learn.

(Source: E.Stephen Mack, Janan Platt HTML 4.0, BPB publications)

Perl

Perl is an acronym, but the key letter is the "e", which stands for "eclectic". It has object-oriented features which have made adding new libraries very easy (in fact, Perl probably has had more success at code reuse than any other object-oriented language), but it's main claim to fame is easy text processing. Since web sites typically involve manipulating text in one way or another, it has become the most popular server extension language on the web. There are lots of online resources for Perl, lots of books and courses, and large libraries of free utilities. Perl is a language that has grown far more than it has been designed, and it would give a formal language designer fits, but it typically does exactly what you need. Perl also has a reputation for being an unreadable programming language. It's certainly the case that it has lots of short cuts which make it easy to create completely unreadable programs—but you can also write perfectly readable programs, so blame the programmer, not the language.

ASP/Perl

Microsoft's ASP is a framework. It defines a set of standard objects that may be used for communicating with the web server and the remote browser.

These objects encapsulate the HTTP protocol that is used for web communication. When people say they built a site using ASP, or when you see a site that has files ending in ".asp", that usually means they used VBScript in an ASP framework. However other languages can use the ASP framework, and one such is Perl.

There are two versions of Perl for ASP. The Unix version (Apache::ASP) uses extensions to the Apache server that parse the ASP files looking for embedded tags containing Perl code. That code is then executed. In addition there are libraries that the code can call, and those libraries implement the ASP objects.

The Windows version of Perl for ASP is available from ActiveState, and is called PerlScript. As far as I can judge from the lists, porting between the two should be straightforward so long as you've kept it in mind when writing your Perl code. See ActiveState's information on ActivePerl and the Apache ASP group's documentation on compatibility with PerlScript.

(Source: http://www.nodeworks.com/asp/)
HTML::Embperl

Embperl does not use HTML tags to embed the code (it uses variations on square brackets such as "[+ +]]"), although in 2.0 this will be optional, you'll be able to use tags (or add new ones). It also parses some HTML tags and handles them specially based on the context. So, for instance, a form page will automatically be filled in if it submits to itself (including checking items in a pick list—something that is usually a pain to code in a scripting language), and table rows can automatically loop over the contents of a Perl array or rows in a database without the need to explicitly create loops around them. These features make doing certain common operations very straightforward, and then the full inclusion of Perl makes everything else possible.

Embperl can also be run stand-alone, without a web server, to create static web pages, which is useful in some circumstances. And it has a powerful templating system similar to that in HTML::Mason, which allows you to create a set of partial web pages (e.g. articles from a 'zine) and then automatically wrap them in templates—rather like using frames, but without the frame.

(Source: http://perl.apache.org/embperl/index.html)

Tcl (Tool command Language)

This fills much the same space as Perl. The language is more formally designed, and also has many object-oriented features. Tcl is often used as a scripting language for programs that have a graphical interface, since Tcl comes with a nice cross-platform interface library. (In fact, even Perl users sometimes use Tcl's UI library.)

Python

Extremely object-oriented, and has the distinction of using indentation to specify program structure.

VBScript

Microsoft's primary scripting language. Available in both server and client-side versions (and for non-web applications). VBScript is to VB as JavaScript is to Java. Which is to say, they look similar, but they aren't the same. ChiliSoft sells a Unix variety of VBScript, which is primarily used by companies who have to develop for both Window's and Unix platforms. ASP/VBScript

This is what most people mean when they say they use/know "ASP" (or "VBScript"). The language is similar to VB, but without all the bells and whistles (limited object support, no exception support...).

If you like VB, then you'll probably like this. Database access functionality is good and built into the language. String manipulation is rather primitive. However there are lots of commercial add-ons that you can use the the ASP/VBScript environment.

VBScript is embedded inside of a few special tags (e.g. "<% %>") within the web page. Virtually all modern HTML editors recognize those tags and leave the contents alone. Some provide VBScript-specific tools for aiding in the editing.

(Source: E.Stephen Mack, Janan Platt HTML 4.0, BPB publications)
ColdFusion

ColdFusion from Allaire was the first commercial server-side scripting language for the web. Despite the dangers of being first (everyone learns from your mistakes, and then Microsoft steps on you) they have done very well in the space. The language is tag based, which means that instead of having a limited set of tags which then contain a traditional programming language, you get a whole bunch of new tags. Most modern HTML editors can recognize and ignore ColdFusion tags. Some editors (such as UltraDev from Macromedia, a high-end HTML editor based on DreamWeaver) can assist in editing the tags.

HTML::Mason

Similar to HTML::Embperl or Apache::ASP, this allows you to embed Perl in HTML files. It's primary strength in in building template-based web sites, where each web page is constructed on the fly from a set of component files. Syntactically it uses tags like those in Apache::ASP to set apart the Perl code.
(Source: http://www.masonhq.com)

Lasso

This is the primary solution if you want to do server-side scripting on the Mac (although with MacOS X, most of the Unix-based solutions should become far more viable). Strong database links and reasonable string processing routines. Like Cold Fusion, this is a tag-based language with the resultant benefits and issues. Very good for taking an existing database and making it available quickly on the web.

PHP

Started life as Perl, but was quickly replaced by it's own interpreter. Syntactically it is very similar to Perl. PHP is only available as a server-side scripting language.

This is by far the most popular scripting language at shared-hosting facilities. (Perl-based solutions are sometimes included at such facilities, but PHP is easy to configure for shared hosting.)

PHP's focus has been on providing routines for doing lots of basic things very easily. There are native database interfaces to lots of databases (but no database independent libraries), lots of string processing routines and other strong features. The result is a language which beginners can get started with relatively easily, and yet it allows powerful scripting as well. Unfortunately it doesn't get to leverage Perl's wide variety of libraries. If one of the Perl scripting languages cloned PHP's basic library, then they'd be as easy to get started with, and even more powerful on the high-end, but until then, PHP is likely to remain the king of shared-hosting solutions.

(Source: http://www.php.net/)

Zope

Zope focuses on object-oriented features (and includes an object-oriented database). It sometimes amazes me that object-oriented solutions haven't taken over the web. Web pages are made of links, not queries, and linking is where object-oriented databases excel. Zope is tag-based, but has the ability to add new tags. The backend programming language is Python.

(Source :http://www.zope.org/)

Choosing a Database

So what about the databases themselves? As with scripting languages, you have some questions to answer first. How much of your site makes use of the database? How many accesses per minute (second?) do you expect the database to get? Are most of them read requests or write requests, or mixed? Do you need transaction support? How big do you expect the database to get? Will it be running on the same machine as the web server? And of course—what platform do you want to use?

Here are some of the issues and implications in a bit more detail.

Database Usage

If you haven't been using a database, and you start using one, you may be tempted to use it for everything. Track page usage by user (use a web server log analysis program instead), dynamically generate per-user information (fetch it once and cache it on the disk, or use frames). There are lots of cool things you can do with a database, but they aren't free. Databases are significantly slower than web servers. Focus your usage on the areas where you really need them. For instance, if you are doing user authentication, authenticate against the database the first time, and then set an encrypted, time limited, cookie that the web server code can check each time. Yes you need to run your scripting language on every access, but at least you don't have to hit the database on every access. Put your images somewhere where they can be accessed without reference to the scripting language or the database. And cache information. If there's configuration information in the database, fetch it once at startup or user login, and then stash it in memory or in a very quick access file (e.g. a Unix DBM file) and use that—don't ask the database for the same information over and over again.

Number of Accesses

Even the slowest of the databases below are perfectly capable of handling a query every second or so (probably more like five queries every second, but we'll be conservative and assume you write really complicated queries). That's 60 database hits a minute, or 3600 database hits an hour. The biggest factors that will effect performance (assuming you write efficient queries and use stored procedures when appropriate) are the number of new connections to the database (you want to reuse connections, and I won't go into details on this, but suffice that you don't want each web user to correspond to the databases' concept of a "user"—so reuse database connections whenever possible), the amount of memory available to the database, and whether anything else is running on the database machine. A web server and a database server on the same machine will start to "thrash" under a heavy load—both of them are trying to access disk and memory resources at the same time. And databases love memory—the more they have, the less they need to access the disk.

Type of Usage

Different databases have different characteristics and are optimized for different types of usage. Most databases will do just great if all you are doing is reading data. Some will do just fine if all you are doing is writing data. However some may start slowing down if you mix reads and writes. One database, for instance, might block all reads while you are doing a write, while another might be able to handle them simultaneously. Clearly the big commercial databases are going to be better are more complex interactions. But at the same time, smaller systems like MySQL may well outperform them on the simple interactions. Similarly commercial databases may work better with extremely large databases, or databases with large records or particularly large fields.

Environment

Databases like lots of memory and fast disks. CPU speed is not as critical. You may well start out with the web server and database server on the same machine, but be prepared to split them up. Also, allocate separate disks. It is preferable if provide a different disk for the web files, the operating system, the database files themselves, and the database recovery/log files. You may also get different speed improvements from different types of disks (some are tuned for large reads and writes, others for lots of seeking back and forth), but if you're trying to get that much performance out of your database then you need a professional DBA, and they will know far more about it than I do.

Transactions

What's a transaction? It's a change to more than one part of a database that gets treated as though it were a single (or "atomic") change. That means that if something goes wrong in the middle of the change, then either none of the change happens, or all of the change happens, but never anything in-between. The classic example is for bank accounts, but transactions get used in lots of other places. Consider, the bank transfers $100 from account A to account B. First it subtracts $100 from A. Then it adds $100 to B. What if just after subtracting $100 from A, account B is closed?

 (Remember, more than one person is using this database at a time, things can change, or maybe the machine crashes.) If you're the owner of account A, then you'd better hope that you get your $100 back. If those two operations are wrapped in a transaction, then you will get your $100 back—even if the machine crashes in the middle.

Do you need transactions? If your database is primarily read-only, with most of the data just written by an administrator or from some other single source, then you probably don't. If you are doing anything more complex, and it involves more than one table in the database, then you may well need transactions. You may be able to get by without them, but you should definitely think about it.

Platforms

Unix is a better platform for databases than the Mac or Window's choices. There, that was simple.

You may notice that, after giving all these hints about different types of performance issues, we don't provide any numbers. Database vendors avoid benchmark comparisons like the plague. Finding comparisons is very difficult, and even when found, it's not clear how useful they are. If the vendor does it's own performance results, you can bet that they spend a lot of time configuring the database server and machine to have just the right characteristics for that database, but you as a customer might not have the experience to do that. On the other hand, if a third party does the comparison, they may not have the experience to realize that if they just tweaked a record layout, or changed a buffer size, the whole thing might perform twice as fast. So the best you can do is look at your needs, skills and budget, and then see what's out there that seems to meet them.

Databases

Access

Microsoft's low-end database. Useful for some prototyping work, but not seriously used for web deployment. Like FileMaker (see below) the main benefit of Access is that it makes it very easy for people to create easy to use simple databases, without really having to know anything about databases. (But personally, I think FileMaker does it better.)

DB2

IBM's entry, going head to head with Oracle. Developer version is free (at least on Linux).

DBD::File

This not as a serious database contender, but as a prototyping tool. This is a Perl DBI-accessible database, you can feed it a basic set of SQL commands, but the underlying format is good old-fashioned comma-quoted values (sometimes called CSV files). If you want to get a real quick demo of something up, this isn't a bad way to start.

FileMaker

The darling of Mac web sites until it changed it's licensing terms to limit the number of users. However it still excels for intranets, and it's by far the easiest system for designing (and changing) databases. Don't expect lightning speed however, it is basically single threaded—meaning that only one read or write can take place at a time. FileMaker provides it's own web access mechanisms, but the most popular way to put it on the web is BlueWorld's Lasso scripting language.

MSSQL

Microsoft SQL Server. Based on code licensed from Sybase (Sybase 6), but now up to Version 7 with Version 2000 (quite a jump there) coming soon. Comes with a reasonable set of UI tools for manipulating it.

MySQL

The workhorse of the Web. No transaction support but fast and powerful enough for the vast majority of web sites. There should be a boost in work here in the near future. Progress Software (a successful 4GL company) announced a subsidiary that is going to help provide new development resources for MySQL—transaction support is at the top of the list.

Oracle

This is the example everyone points to. You know you've got a popular database when your CEO is as rich as Bill Gates, but you're basically a one-product company. Expensive, but the prices have dropped quite a bit (especially for developer versions). Although people often start with other databases, this is the one that sites seem to grow into.

PostgreSQL

Growing in popularity. Has triggers, transactions and other traditional DB features, but is free like MySQL. Seems to scale well, but overall performance (especially at the level of most midrange sites) is slower than MySQL. (See this comparison of the two.)

Sybase

The other database company. A very solid database on par with Oracle, but for some reason not getting the press.

(Source: http://www.starnine.com/)

Resources:

Jesus Castagnetto, Harish Rawat, Sasha Schumann, Chris ScolLo, Deepak Veliathh “Professional PHP programming” Wrox pressLtd Feb 2000.

E.Stephen Mack, Janan Platt HTML 4.0, BPB publications

http://www.phpbuilder.com/columns/tim20000705.php3
http://www.nodeworks.com/asp/
http://msdn.microsoft.com/scripting/default.htm?/scripting/vbscript/default.htm
http://www.allaire.com/
http://perl.apache.org/embperl/index.html
http://www.masonhq.com
http://java.sun.com/
http://www.blueworld.com/
http://www.php.net/
http://www.zope.org/
http://www.apache.org/
http://www.microsoft.com/siteserver/default.htm
http://www.iplanet.com/products/infrastructure/web_servers/index.html
http://www.starnine.com/
*.ix refers to the constellation od Unix and Unix-like OS, including Linux, FreeBSD, NetBSD, BSDI, Sun Solaris, HP/UX and others

Scripting Language
Language
Smart Cached
Web Servers
Operating Systems
Database Drivers
Notes

ASP/Perl

(Active Server Page)
Perl
Manually
Apache(plug –in), IIS (postscript)
*.ix

Unix and Unix Like Operation Systems including Linux, FreeBSD
Perl-based
Uses ASP tags and the ASP object model to embed Perl in HTML files. Apache::ASP and ActiveState's PerlScript are two different products, but they attempt to stay compatible. PerlScript is also available for Unix systems.

ASP/VBScript
VB-like
Yes
IIS
NT
ODBC and native
Microsoft's primary ASP implementation. When people say "ASP" they usually mean using

VBScript in the ASP framework.

ColdFusion
Tag-based
Yes
Apache (CGI or plus-in), Netscape (CGI or plug-in), IIS
Solaris, Linux, HP/UX, NT
ODBC and Native
The first commercial embedded language for the web.

HTML::Embperl
Perl
Yes
Apache (CGI or plus-in), Netscape (CGI)
*ix
Perl-based
Embedded Perl in HTML pages, with built-in support for many common HTML and site generation problems.

HTML::MAson
Perl
Result may be cashed manually
Apache
*ix
Perlbased
Uses ASP-like syntax to embed Perl in HTML. Focus on site support features such as templating.

JSP
Java
Yes
Apache, Netscape, IIS
*ix, MacOS, NT
JDBC
Embedded Java in HTML pages. JSP implementations are available from Sun and a number of third party developers.

Lasso
Tag based
No
WebSTAR, IIS
Mac OS, NT
ODBC and Native (FileMAker, Access,MSSQL)
Tag-based extension language, initially developed primarily for FileMaker on the Mac, but now cross-platform and with broader database support

PHP
Perl-like
In 4.0
Apache, Netscape, IIS
*ix, NT
ODBC and Native (Adabas D, MySQL, Oracle, Interbase, Informix, MSSQL, MSQL, Postgres, Solid, Unix DBM)
Probably the most popular embedded scripting language on *ix platforms. Supported by most ISPs.

Zope
Python/tag-based
No

*ix, NT
ZODB (object DB), Oracle, Sybase, ODBC, Solid, MySQL, PostgreSQL, Python-based
Sybase, ODBC, Solid, MySQL, PostgreSQL, Python-based.

An object-oriented web development language using front-end tags and backend Python programs.

(Source: http://commons.somewhere.com/buzz/2000/scripting.html)

PAGE
5

